Developing International GHG Emission Reduction Projects Using AFV Technologies

Jette Findsen
Science Applications International Corporation (SAIC)

May 16, 2001

Overview of Session

Benefits to AFV Industry

Market Based System for GHG Reductions

Co-operative Projects

Baseline Development

Electric Vehicle Case Study

Why Get Involved in GHG Reduction Projects?

Significant potential for reducing GHG emissions

Source: Michael Wang, ANL, GREET Model

Benefits to AFV Industry

- Growing value of GHG credits
- Improve economics of AFV projects
- Influence development of market-based framework for GHG control

• Technology Transfer

A Market Based System

An Employee-Owned Company

Earned Credit Transfer from Host to Investor

Co-operative Project Types: Transport Sector

- Change vehicle fuel efficiency
- Change vehicle fuel type
- Switch transport mode
- Reduce transport activity
- Increase load factor

Project Development Steps

The Emissions Baseline

- Measure for estimating GHG emission benefits
- Ensures environmental benefit of project

Step by Step Approach to Baseline Development

- Describe the project
 - current situation/problem
- Verify project "additionality"
- Describe baseline characteristics
- Quantify GHG baseline emissions
- Quantify project GHG emissions
- Estimate reduction impact

What Do We Mean by "Additionality"?

Baseline Characteristics: Project Boundary

- Life cycle versus tail pipe emissions analysis
 - Upstream emissions can make a difference when comparing vehicle/fuel systems

Baseline Characteristics: Sample Types

Comparison of Project Emissions Against Alternative Baselines

	Baseline 1	Baseline 2	Baseline 3	Project Emission
cumulative emissions	455,000	329,000	299,000	234,000
total credit	221,000	95,000	65,000	-

Baseline Characteristics: Relevant GHGs

- Major Greenhouse gases:
 - Carbon dioxide (CO2)
 - Methane (CH4)
 - Nitrous Oxide (N2O)
- Global Warming Potential (GWP)
 - CO2= 1; CH4 = 21; N2O = 310
- Total CO2-equivalent emissions:

$$CO2$$
-equiv = $1 \times (mass \ of \ CO2) + \\ 21 \times (mass \ of \ CH4) + \\ 310 \times (mass \ of \ N2O)$

Quantify GHG Benefits

1. Estimate baseline

2. Determine project emissions

3. Baseline - project emissions = net benefits

Baseline Characteristics: Possible Estimation Procedures

- Tailpipe evaluation
 - (miles per year) x (grams per mile)
 - (fuel use) x (fuel carbon)
 - add methane penalty
- Full fuel cycle evaluation
 - Production, processing, transportation of fuel
 - + operation of vehicle

Baseline Characteristics: Data Availability

- For U.S. projects use GREET
 - The Greenhouse Gases, Regulated Emissions,
 and Energy Use in Transportation (GREET)
 Model
 - Argonne National Laboratorywww.transportation.anl.gov/ttrdc/greet/
- Other countries
 - Limited availability

Electric Vehicle Case Study

- Hypothetical
- 125 EVs to replace 125 gasoline vehicles
- 3 scenarios:
 - Static baseline, comparing fuel usage
 - Modified baseline, comparing fuel usage
 - Static baseline, analyzing full fuel cycle

Case Study: Comparing Fuel Usage

<u>Emissions</u> = (miles/fuel efficiency)

x (emission factor of fuel)

x (number of vehicles)

x (number of project years)

Net Project Benefits =

Reference Case (emissions w/out project)

- project emissions

Case Study Result: Version 1 & 2

Metric t CO₂

Case Study: Version 3

Full fuel cycle analysis

An Employee-Owned Company

Conclusion

- Co-operative Mechanisms
 - Improve environmental performance
 - Spur technology transfer
 - Address economics
- Project developers should:
 - Use detailed baselines, w/out compromising costs
 - Ensure additionality

